Etudes de fonctions

Euler (1707-1783) définit une fonction d'une quantité variable comme " une expression analytique composée d'une manière quelconque de cette quantité variable et de nombres ou de quantités constantes". En fait Euler donne une classification des fonctions en deux types: algébriques (fonctions rationnelles et irrationnelles), transcendantes (fonctions trigonométriques, logarithmes, exponentielles, puissances).

Etudes de fonctions

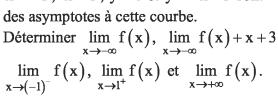
I. Branches infinies

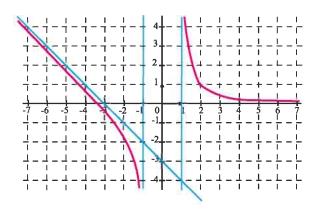
Soit f une fonction et C_f sa courbe représentative dans un repère orthogonal.

On dit que C_f admet une branche infinie dès que l'une des coordonnées d'un point de C_f tend vers l'infini.

Activité 1

La courbe ci-contre est la représentation graphique d'une fonction f définie sur $]-\infty,-1[\,\cup\,]1,+\infty[$. Les droites d'équations x=-1, x=1, y=0 et y=-x-3 sont des asymptotes à cette courbe.





Nous avons résumé dans le tableau ci-dessous la nature de certaines branches infinies vues en 3^{ème} année.

f	$C_{\mathbf{f}}$
$\lim_{x\to a^{+}} f(x) = +\infty \text{ ou } \lim_{x\to a^{+}} f(x) = -\infty.$	La droite D: $x = a$ est
$\lim_{x\to a^{-}} f(x) = +\infty \text{ ou } \lim_{x\to a^{-}} f(x) = -\infty.$	asymptote à C_f .
$\lim_{x \to +\infty} f(x) = L \text{ ou } \lim_{x \to -\infty} f(x) = L. \text{ (L réel)}$	La droite $D: y = L$ est
x→+∞	asymptote à C_f .
$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0 \text{ ou } \lim_{x \to -\infty} (f(x) - (ax + b)) = 0.$	La droite $D: y = ax + b$ est
$\underset{X\to+\infty}{\text{min}}(T(X) = (aX + b)) = 0.$	asymptote à C_f .

Activité 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x^2 + x + 1}$.

On désigne par $\,C_f\,$ la courbe représentative de f dans un repère orthonormé.

- 1. a. Déterminer $\lim_{x\to +\infty} f(x)$.
 - b. Montrer que pour tout réel strictement positif x, $f(x) = x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}$.
 - c. En déduire $\lim_{x\to +\infty} \frac{f(x)}{x}$.
- 2. a. Montrer que pour tout réel strictement positif x, $f(x) x = \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2} + 1}}$.
 - b. En déduire $\lim_{x\to +\infty} f\left(x\right) x$. Interpréter graphiquement.
- 3. Calculer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -\infty} \frac{f(x)}{x}$ et $\lim_{x \to -\infty} f(x) + x$. Interpréter graphiquement.
- Soit f une fonction telle que f(x) tend vers l'infini, lorsque x tend vers l'infini. On désigne par C_f sa courbe dans un repère orthogonal $\left(O,\vec{i},\vec{j}\right)$. Alors la branche infinie de C_f dépend de la limite de $\frac{f(x)}{x}$, lorsque x tend vers l'infini.

Nous donnons dans le tableau ci-dessous un procédé de détermination de la branche infinie de C_f dans le cas où $\lim_{x\to +\infty} f(x)$ est infinie. Les autres cas se déterminent de façon analogue.

- * Si $\lim_{x \to +\infty} \frac{f(x)}{x}$ est infinie, alors C_f admet une branche parabolique de direction $(0, \vec{j})$ au voisinage de $+\infty$.
- * Si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$, alors C_f admet une branche parabolique de direction $(0, \vec{i})$ au voisinage de $+\infty$.
- * Si $\lim_{x \to +\infty} \frac{f(x)}{x} = a \left(a \in \mathbb{R}^* \right)$ alors deux cas peuvent se présenter selon $\lim_{x \to +\infty} \left(f(x) ax \right)$.
- Si $\lim_{x\to +\infty} (f(x)-ax) = b(b\in \mathbb{R})$ alors la droite d'équation y=ax+b est une asymptote oblique à la courbe C_f au voisinage de $+\infty$.
- Si $\lim_{x\to +\infty} (f(x)-ax)$ est infinie alors la droite d'équation y=ax est une direction asymptotique à la courbe C_f au voisinage de $+\infty$.

Activité 3

Soit f la fonction définie sur $[-1,+\infty[$ par $f(x)=2x+\sqrt{x+1}$ et C_f la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

Déterminer la nature de la branche infinie de $\,C_f\,$ au voisinage de $\,+\infty\,$.

Activité 4

Soit f la fonction définie sur $]-1,+\infty[$ par $f(x)=\frac{x^2+x-1}{x+1}$ et C_f la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

Etudier les branches infinies de C_f.

II. Eléments de symétrie

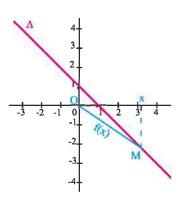
Activité 1

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

Soit Δ la droite d'équation y = 1 - x.

A tout réel x, on associe le point M de Δ d'abscisse x et on désigne par f la fonction définie par f(x) = OM.

Soit C_f la courbe représentative de f dans le repère (O, \vec{i}, \vec{j}) .



- 1. Montrer que $f(x) = \sqrt{x^2 + (1-x)^2}$.
- 2. Montrer que la droite Δ : $x = \frac{1}{2}$ est un axe de symétrie de C_f .
- 3. Montrer que la droite Δ' d'équation $y = \sqrt{2}x \frac{\sqrt{2}}{2} \text{ est une asymptote à la}$ courbe C_f au voisinage de $+\infty$.

Soit f une fonction définie sur D.

On désigne par $C_{\rm f}$ sa courbe représentative dans un repère orthogonal.

La droite $\Delta: x = a \ (a \in \mathbb{R})$ est un axe de symétrie

pour
$$C_f$$
 si pour tout x de D,
$$\begin{cases} (2a-x) \in D, \\ f(2a-x) = f(x). \end{cases}$$

Activité 2

Soit f la fonction définie sur R par

$$f(x) = \begin{cases} 2 - \sqrt{2 - x} & \text{si } x < 1, \\ \sqrt{x} & \text{si } x \ge 1. \end{cases}$$

On désigne par C_f la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Montrer que le point I(1, 1) est un centre de symétrie de C_f .
- 2. Montrer que f est dérivable en 1.
- 3. Donner une équation de la tangente T en I à C_f .
- 4. Montrer que I est un point d'inflexion de $\,C_f\,$.
- 5. Donner la position relative de T et C_f .

Le plan est muni d'un repère orthogonal (O, \vec{i}, \vec{j}) . Soit f une fonction définie sur un ensemble D, de courbe représentative C et O' le point de coordonnées (a,b).

Le point O' est un centre de symétrie de C, si pour tout x appartenant à D, 2a - x appartient à D et f(2a - x) = 2b - f(x).

III. Exemples d'étude de fonctions

Exemple 1

Soit la fonction $f: x \mapsto \frac{1}{8}x^3 + x - 4$ et C_1 sa courbe représentative dans un repère orthonormé.

- 1. Etudier les branches infinies de C₁.
- 2. a. Expliciter f'(x), pour tout réel x.
 - b. Montrer que C₁ admet un point d'inflexion I.
 - c. Donner une équation de la tangente T à C₁ au point I.
- 3. Dresser le tableau de variation de f.
- 4. Montrer que f réalise une bijection de $\mathbb R$ sur $\mathbb R$.
- 5. Représenter dans le même repère orthonormé les courbes respectives C_1 et C_2 de f et f^{-1} .

Solution

1. La fonction f est définie sur R.

$$\lim_{x \to +\infty} \frac{1}{8} x^3 + x - 4 = +\infty \ \text{ et } \lim_{x \to -\infty} \frac{1}{8} x^3 + x - 4 = -\infty \,.$$

$$\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{\frac{1}{8}x^3+x-4}{x}=\lim_{x\to +\infty}\frac{1}{8}x^2=+\infty\quad \text{et}\ \lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{1}{8}x^2=+\infty\ .$$

On en déduit que la courbe de f admet deux branches paraboliques de direction $(0, \vec{j})$.

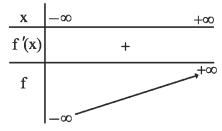
2. a. La fonction polynôme f est dérivable sur $\mathbb R$.

Le calcul donne $f'(x) = \frac{3}{8}x^2 + 1$.

b. La fonction f' est dérivable sur \mathbb{R} et $f''(x) = \frac{3}{4}x$, pour tout réel x.

La fonction f'' s'annule en 0 en changeant de signe. On en déduit que le point I(0,-4) est un point d'inflexion de C_1 .

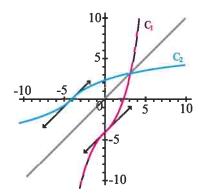
- c. Des égalités f(0) = -4 et f'(0) = 1, on déduit que T à pour équation y = x 4.
- 3. Tableau de variation de f.



4. La fonction continue f est strictement croissante sur \mathbb{R} . Elle réalise une bijection strictement croissante de \mathbb{R} sur $f(\mathbb{R})$.

De plus,
$$f(\mathbb{R}) = \lim_{x \to -\infty} f, \lim_{x \to +\infty} f = \mathbb{R}$$
.

Ce qui prouve le résultat.



5. Représentation graphique de f et de f⁻¹.

Exemple 2

Soit la fonction $f: x \mapsto \frac{2x^2 + x - 4}{x - 1}$.

- 1. Vérifier que $f(x) = 2x + 3 \frac{1}{x-1}$, $x \ne 1$.
- 2. Etudier la fonction f et tracer sa courbe dans un repère orthogonal (O, \vec{i}, \vec{j}) .
- 3. Montrer que pour tout réel k, l'équation f(x) = k admet exactement deux solutions.

Solution

- 1. On peut écrire pour tout $x \ne 1$, $2x + 3 \frac{1}{x 1} = \frac{(2x + 3)(x 1) 1}{x 1} = \frac{2x^2 + x 4}{x 1}$.
- 2. Etude de f.
- Limites aux bornes de l'ensemble de définition.

La fonction rationnelle f est définie sur $]-\infty,1[\ \cup\]1,+\infty[\ .$

De plus,
$$\lim_{x\to +\infty} \frac{2x^2+x-4}{x-1} = \lim_{x\to +\infty} 2x = +\infty$$
 et $\lim_{x\to -\infty} \frac{2x^2+x-4}{x-1} = \lim_{x\to -\infty} 2x = -\infty$.

De même,
$$\lim_{x \to 1^+} 2x + 3 - \frac{1}{x - 1} = -\infty$$
 et $\lim_{x \to 1^-} 2x + 3 - \frac{1}{x - 1} = +\infty$.

· Etude des branches infinies.

La courbe C de f admet la droite x = 1 comme asymptote.

D'autre part,
$$\lim_{x \to +\infty} (f(x) - 2x - 3) = \lim_{x \to +\infty} \frac{-1}{x - 1} = 0$$
 et $\lim_{x \to -\infty} (f(x) - 2x - 3) = \lim_{x \to -\infty} \frac{-1}{x - 1} = 0$.

Ce qui prouve que la droite d'équation y = 2x + 3 est une asymptote à la courbe C de f, au voisinage de l'infini.

Tableau de variation.

La fonction rationnelle f est dérivable en tout réel de son ensemble de définition.

Le calcul donne $f'(x) = 2 + \frac{1}{(x-1)^2}$. Ce qui prouve que f est strictement croissante

Représentation graphique

sur $]-\infty$, 1[et sur]1, $+\infty$ [.

Tableau de variation

3. La fonction f est continue et strictement croissante sur chacun des intervalles]-0,1[et

$$|1,+\infty[\ .$$
 On en déduit que $f(]-\infty,1[)=\lim_{x\to -\infty}f,\lim_{x\to 1^-}f=\mathbb{R}$ et $f(]1,+\infty[)=\lim_{x\to 1^+}f,\lim_{x\to +\infty}f=\mathbb{R}$.

Ce qui prouve que pour tout réel k, l'équation f(x) = k admet exactement deux solutions x_1 et x_2 appartenant respectivement à $]-\infty,1[$ et $]1,+\infty[$.

Exemple 3

Soit la fonction $f: x \mapsto \frac{1}{(x+3)(x-2)}$.

- 1. Vérifier que $f(x) = \frac{1}{5(x-2)} \frac{1}{5(x+3)}, x \neq -3 \text{ et } x \neq 2.$
- 2. Etudier la fonction f et tracer sa courbe dans un repère orthogonal (O, \vec{i}, \vec{j}) .
- 3. Etudier, graphiquement, suivant les valeurs du réel k, les solutions de l'équation f(x) = k.

Solution

1. On peut écrire
$$\frac{1}{5(x-2)} - \frac{1}{5(x+3)} = \frac{(x+3) - (x-2)}{5(x-2)(x+3)} = \frac{1}{(x-2)(x+3)}$$
, $x \ne -3$ et $x \ne 2$.

2. Etude de f.

· Limites aux bornes de l'ensemble de définition

La fonction rationnelle f est définie sur $]-\infty, -3[\cup]-3, 2[\cup]2, +\infty[$.

De plus,
$$\lim_{x \to +\infty} \frac{1}{(x+3)(x-2)} = \lim_{x \to +\infty} \frac{1}{x^2} = 0$$
 et $\lim_{x \to -\infty} \frac{1}{(x+3)(x-2)} = \lim_{x \to -\infty} \frac{1}{x^2} = 0$.

De même.

$$\lim_{x \to 2^{+}} \frac{1}{5(x-2)} - \frac{1}{5(x+3)} = +\infty \quad \text{et} \quad \lim_{x \to 2^{-}} \frac{1}{5(x-2)} - \frac{1}{5(x+3)} = -\infty .$$

$$\lim_{x \to -3^{+}} \frac{1}{5(x-2)} - \frac{1}{5(x+3)} = -\infty \quad \text{et} \quad \lim_{x \to -3^{-}} \frac{1}{5(x-2)} - \frac{1}{5(x+3)} = +\infty .$$

• Etude des branches infinies

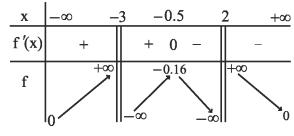
La courbe C de f admet les droites d'équations x = -3 et x = 2 comme asymptotes. D'autre part, la droite d'équation y = 0 est asymptote à la courbe C de f, au voisinage de l'infini.

• La fonction rationnelle f est dérivable sur son ensemble de définition.

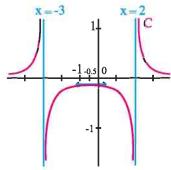
Le calcul donne
$$f'(x) = -\frac{1}{5(x-2)^2} + \frac{1}{5(x+3)^2} = \frac{-2x-1}{(x-2)^2(x+3)^2}, \ x \neq 2 \text{ et } x \neq -3.$$

Ce qui prouve que $f'(x) \ge 0$, si et seulement si, $x \le -0.5$ et $x \ne -3$.

Tableau de variation de f



Représentation graphique de f



- 3. Déterminer le nombre de solutions de l'équation f(x) = k revient à déterminer le nombre de points d'intersection de la courbe de f avec la droite d'équation y = k.
- Si k < -0.16 ou k > 0 , il y a deux points d'intersection.
- Si k = -0.16, il y a un unique point d'intersection.
- Si $-0.16 < k \le 0$, il n'y a aucun point d'intersection.

Exemple 4

Soit la fonction $f: x \mapsto x + \sqrt{x^2 - 1}$ et C sa courbe représentative dans un repère orthonormé.

- 1. Déterminer l'ensemble D de définition de f.
- 2. a. Montrer que f(x)f(-x) = -1, pour tout réel x de D.
 - b. En déduire que $f(x) \neq 0$, pour tout réel x de D.
 - c. Etudier la limite de f en $+\infty$ et en $-\infty$.
 - d. Montrer que la droite Δ : y = 2x est asymptote à C.
- 3. Montrer que $f'(x) = \frac{f(x)}{\sqrt{x^2 1}}, x \in]-\infty, -1[\cup]1, +\infty[$.
- 4. Etudier la dérivabilité de f à droite en 1 et à gauche en −1.
- 5. dresser le tableau de variation de f et tracer C.

Solution

1. La fonction f est définie pour tout réel x tel que $x^2 - 1 \ge 0$.

On en déduit que $D =]-\infty, -1] \cup [1, +\infty[$.

- 2. a. On peut écrire $f(x)f(-x) = (x + \sqrt{x^2 1})(-x + \sqrt{x^2 1}) = -1$, $x \in D$.
- b. Cela résulte de l'égalité f(x)f(-x) = -1, pour tout réel x de D.
- c. Les égalités $\lim_{x\to +\infty} x = +\infty$ et $\lim_{x\to +\infty} \sqrt{x^2-1} = +\infty$ donnent $\lim_{x\to +\infty} f\left(x\right) = +\infty$.

D'autre part l'égalité f(x)f(-x) = -1, valable pour tout réel x de D implique que

$$\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} \frac{-1}{f(-x)} = 0.$$

d. Le calcul donne $f(x)-2x=-x+\sqrt{x^2-1}=\frac{-1}{x+\sqrt{x^2-1}},\ x\in D$.

On en déduit que $\lim_{x\to +\infty} (f(x)-2x)=0$. Ce qui prouve que la droite $\Delta:y=2x$ est asymptote à C.

3. Il est clair que la fonction f est dérivable sur chacun des intervalles $]-\infty,-1[$ et $]1,+\infty[$ comme somme de fonctions dérivables.

De plus, $f'(x) = 1 + \frac{x}{\sqrt{x^2 - 1}} = \frac{f(x)}{\sqrt{x^2 - 1}}$ pour tout réel x de $]-\infty, -1[\cup]1, +\infty[$.

4. Pour tout x > 1, $\frac{f(x)-f(1)}{x-1} = \frac{x-1+\sqrt{x^2-1}}{x-1} = 1 + \frac{\sqrt{x^2-1}}{x-1} = 1 + \frac{x+1}{\sqrt{x^2-1}}$.

Ce qui implique que $\lim_{x\to 1^+} \frac{f(x)-f(1)}{x-1} = +\infty$.

De même , on vérifie que pour x < -1 , $\frac{f(x)-f(-1)}{x+1} = 1 + \frac{x-1}{\sqrt{x^2-1}}$.

Par suite $\lim_{x\to -1^-} \frac{f(x)-f(-1)}{x+1} = -\infty$.

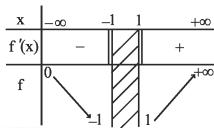
5. La fonction continue f ne s'annule sur aucun des intervalles $]-\infty, -1]$ et $[1, +\infty[$.

On en déduit qu'elle garde un signe constant sur chacun des intervalles $]-\infty, -1]$ et $[1, +\infty[$. Ce qui prouve que f(x) est du signe de f(1) pour $x \ge 1$ et f(x) est

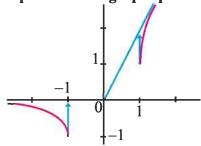
du signe de f(-1) pour $x \le 1$.

Il en résulte que f'(x) > 0, si et seulement si, x > 1.

Tableau de variation de f



Représentation graphique de f



Exemple 5

Soit la fonction $f: x \mapsto \frac{4\sin x}{2 + \cos x}$.

- 1. a. Déterminer l'ensemble de définition de f.
 - b. Etudier la parité de f et vérifier que 2π est une période de f.
- 2. Etudier les variations de f sur $[0, \pi]$.
- 3. Tracer, dans un repère orthonormé (O,\vec{i},\vec{j}) , la courbe de la restriction de f à $\left[-2\pi,2\pi\right]$

Solution

- 1. a. La fonction f est définie sur \mathbb{R} , car $2 + \cos x \neq 0$ pour tout réel x.
- b. On vérifie facilement que f est impaire et que 2π est une période de f.
- 2. La fonction f est dérivable comme quotient de fonctions dérivables tel que le

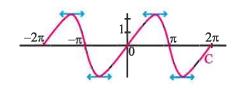
dénominateur ne s'annule pas. De plus, $f'(x) = \frac{4(2\cos x + 1)}{(2 + \cos x)^2}$, pour tout réel x de $[0, \pi]$.

On en déduit que $f'(x) \ge 0$, si et seulement si, $x \in \left[0, \frac{2\pi}{3}\right]$.

Tableau de variation de f sur $[0, \pi]$.

			2π		L	
X	0		3		2	τ
f '(x)		+	0	_		
f			$\sqrt{\frac{4}{\sqrt{3}}}$			
	$ _{0}$					0

3. Représentation graphique de f sur $[-2\pi, 2\pi]$.



Exemple 6

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \sin x - \frac{2}{\pi}x$.

1. a. Etudier les variations de f' et en déduire qu'il existe un unique réel α de $\left[0, \frac{\pi}{2}\right]$ tel que $f'(x) \ge 0$, si et seulement si, $x \in \left[0, \alpha\right]$.

b. En utilisant la touche \cos^{-1} de la calculatrice, donner une valeur approchée à 10^{-4} près de α .

2. Dresser le tableau de variation de f, en déduire le signe de f.

3. Tracer la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Solution

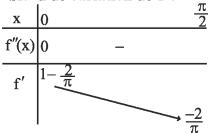
1. a. La fonction f est dérivable comme somme de fonctions dérivables sur $\left[0, \frac{\pi}{2}\right]$

et $f'(x) = \cos x - \frac{2}{\pi}$, pour tout réel x de $\left[0, \frac{\pi}{2}\right]$.

La fonction f' est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et f''(x) = $-\sin x$, pour tout réel x de $\left[0, \frac{\pi}{2}\right]$.

On en déduit que $f''(x) \le 0$, pour tout réel x de $\left[0, \frac{\pi}{2}\right]$.

Tableau de variation de f'.



La fonction f' réalise une bijection strictement décroissante de $\left[0, \frac{\pi}{2}\right]$ sur $\left[-\frac{2}{\pi}, 1 - \frac{2}{\pi}\right]$.

Les réels $-\frac{2}{\pi}$ et $1-\frac{2}{\pi}$ étant de signe contraire, il existe alors un unique réel α de $\left[0,\frac{\pi}{2}\right]$, tel que $f'(\alpha) = 0$.

On en déduit que $f'(x) \ge 0$, si et seulement si, $x \in [0, \alpha]$.

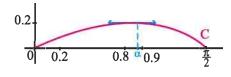
b. Le réel α est l'unique solution dans $\left[0, \frac{\pi}{2}\right]$ de l'équation $\cos(x) = \frac{2}{\pi}$.

En utilisant la touche \cos^{-1} de la calculatrice, on obtient $\alpha \simeq 0.88068923$, On en déduit que 0.8807 est une valeur approchée à 10^{-4} près de α .

3. La calculatrice donne, $f(\alpha) \simeq 0.21051366$.

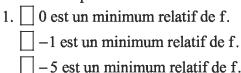
Tableau de variation de f.

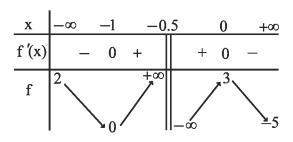
Représentation graphique de f.



QCM

Nous avons représenté ci-contre le tableau de variation d'une fonction f. Cocher la réponse exacte.





2. [La fonction f est croissante sur	[-1, 0]	
------	----------------------------------	---------	--

La fonction f est croissante sur
$$[-1, -0.5[$$
 et sur $]-0.5, 0]$.

La fonction f est décroissante sur
$$]-\infty, -0.5]$$
.

$$x = 2$$
.

4. La courbe de f admet pour asymptote la droite d'équation

$$\prod y = 2$$
.

$$v = -0.5$$
.

5. La courbe de f et l'axe des abscisses ont

Г	7					
	u	n p	ooin	t co	omn	ıun.

İ	deux	noints	communs
	ucux	pomis	Communis

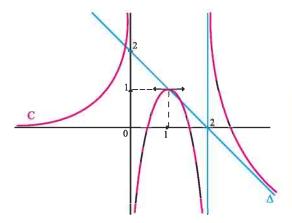
VRAI-FAUX

Répondre par vrai ou faux en justifiant la réponse.

Soit f une fonction deux fois dérivable sur un intervalle a-h, a+h,
- 1. Si f''(a) = 0 alors la courbe de f admet un point d'inflexion d'abscisse a.
- 2. Si f' est décroissante sur a h, a et croissante sur a + h alors la courbe de f admet un point d'inflexion d'abscisse a.
- 3. Si f' est croissante sur]a-h, a+h[alors f est croissante sur]a-h, a+h[.
- 4. Si f'' est négative sur]a-h, a+h[alors f est décroissante sur]a-h, a+h[.

1 La courbe ci-dessous est la représentation

graphique d'une fonction f définie sur $\mathbb{R} \setminus \{0,2\}$. La droite Δ et les droites d'équations respectives x = 0, x = 2 et y = 0 sont des asymptotes à la courbe C.



1. Déterminer graphiquement,

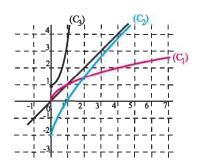
 $\lim_{-\infty}f,\lim_{0^{-}}f,\lim_{0^{+}}f,\lim_{2^{-}}f,\lim_{2^{+}}f,\lim_{+\infty}f,\lim_{x\to+\infty}\frac{f\left(x\right)}{x}\text{ et }$ $\lim f(x)+x-2$.

- 2. Dresser le tableau de variation de f.
- 3. Déterminer suivant les valeurs de m, le nombre de solutions de l'équation f(x) = m.

2 On a représenté trois fonctions f, g et h définies

sur l'intervalle $[0, +\infty]$ par

$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x}$ et $h(x) = x - \frac{2}{x+1}$.



- 1. Identifier pour chaque fonction sa courbe représentative.
- 2. Préciser pour chaque courbe la nature de sa branche infinie.

3 Le plan est muni d'un repère orthogonal

 (O,\vec{i},\vec{j}) . Déterminer la nature des branches infinies de la courbe de f dans chacun des cas ci-dessous.

1.
$$f: x \mapsto 2x - 3\sqrt{x-1}$$
.

2.
$$f: x \mapsto \frac{1}{x} - \sqrt{x+2}$$
.

3.
$$f: x \mapsto x\sqrt{\frac{x-1}{x+1}}$$
.

On considère la fonction f définie sur R par

 $f(x) = x + \sqrt{x^2 + 1}$ et on désigne par \mathscr{C} sa courbe représentative dans un repère orthogonal (O, \vec{i}, \vec{j}) .

- 1. Montrer que l'axe des abscisses est une asymptote à 8 en ∞.
- 2. Montrer que la droite d'équation y = 2x est une asymptote à 8 en +∞.

5 Soit la fonction f définie sur R par

$$f(x) = \begin{cases} x^2 - 2x + 4 & \text{si } x \le 1, \\ \frac{1}{x} + x + 1 & \text{si } x > 1. \end{cases}$$

- 1. Montrer que f est dérivable en 1 et préciser f'(1).
- 2. Montrer que f est dérivable sur R et déterminer f'.
- 3. Dresser le tableau de variation de f et construire la courbe de f dans un repère orthonormé.

1. Soit la fonction $f: x \mapsto \frac{x^2}{3} + \frac{9}{4x}$.

- 2. Déterminer l'ensemble de définition de f.
- 3. Dresser le tableau de variation de f.
- 4. Etudier les branches infinies.
- 5. Construire la courbe de f dans un repère orthonormé.
- 6. En déduire la construction de la courbe d'équation

$$y = \left| \frac{x^2}{3} + \frac{9}{4x} \right|.$$

Soit la fonction $f: x \mapsto \frac{x^3}{(x-1)^2}$.

1. Déterminer $\lim_{x\to 1} f(x)$ et $\lim_{x\to +\infty} (f(x)-x-2)$ et

interpréter les résultats obtenus.

2. Etudier les variations de f et tracer sa courbe représentative dans un repère orthogonal du plan.

8 Soit la fonction

$$f: x \mapsto \frac{x^3 + 3x^2 + 3x + 5}{(x+1)^2}, x \neq -1.$$

1. Déterminer les réels a, b et c tels que

$$f(x) = ax + b + \frac{c}{(x+1)^2}, x \neq -1.$$

- 2. Dresser le tableau de variation de f.
- 3. Soit C la courbe de f dans un repère orthonormé.
- a. Montrer que C admet, au voisinage de l'infini, une asymptote D que l'on déterminera.
- b. Etudier la position relative de C et D.
- c. Tracer D et C.

Soit la fonction $f: x \mapsto \frac{x^2 - 2x + 3}{x - 1}$, $x \ne 1$ et C

la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

1. Déterminer les réels a, b et c tels que

$$f(x) = ax + b + \frac{c}{x-1}, x \neq 1.$$

- 2. Dresser le tableau de variation de f.
- 3. Montrer que C admet un centre de symétrie.
- 4. a. Montrer que C admet une asymptote oblique D que l'on déterminera.
- b. Etudier la position relative de C et D.
- c. Tracer D et C.
- 5. Montrer que la restriction g de f à l'intervalle

$$[1+\sqrt{2},+\infty]$$
 réalise une bijection de

 $\lceil 1 + \sqrt{2}, +\infty \rceil$ sur un intervalle que l'on précisera.

- a. Dresser le tableau de variation de g^{-1} .
- b. Résoudre l'équation g(x) = x. En déduire les coordonnées des points d'intersection des courbes C
- et C', où C' est la courbe de g^{-1} dans le repère (O, \vec{i}, \vec{j}) .
- c. Tracer la courbe C'.

Soit la fonction $f: x \mapsto \frac{x}{\sqrt{3}} - \frac{\sqrt{3}}{x}$ et C la

courbe de f dans un repère orthonormé (O,i, i).

- 1. Etudier les variations de f et tracer C.
- 2. Soit S la symétrie orthogonale par rapport à la droite D d'équation x = 1.

Soit M(x, y) un point du plan et M'(x', y') son symétrique par rapport à D.

- a. Exprimer les coordonnées de M', à l'aide de celles
- b. Trouver l'équation de la courbe C' image de C
- c. Déterminer les points communs à C et C'.
- d. Tracer C' dans (O, \vec{i}, \vec{j}) .

Soit la fonction $f: x \mapsto |x+1| + \frac{x}{x^2 + 1}$ et C la

courbe de f dans un repère orthonormé (O, i, j).

- 1. Préciser l'ensemble de définition de f.
- 2. Dresser le tableau de variation de f.
- 3. Déterminer les asymptotes de C.
- 4. Etudier la position relative de C et de ses asymptotes obliques.
- 5. Donner l'équation de la tangente à C au point d'abscisse 0 et préciser la position de C par rapport à cette tangente sur l'intervalle]-1,1[.
- 6. Tracer C.

Soit la fonction $f: x \mapsto \frac{x^4 - 6x^2 + 1}{x^3 - x}$ et C la

courbe de f dans un repère orthonormé.

- 1. a. Préciser l'ensemble de définition de f.
- b. Déterminer les réels a, b et c tels que

$$f(x) = x + \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}, x \in \mathbb{R} \setminus \{-1,0,1\}.$$

- 2. Dresser le tableau de variation de f.
- 3. Déterminer les asymptotes à la courbe C.
- 4. Résoudre les équations f(x) = 0 et f(x) = x.
- 5. Montrer que C possède un centre de symétrie et tracer C.
- 6. Soit k un réel et Pk la fonction polynôme défini par

$$P_k(x) = x^4 - kx^3 - 6x^2 + kx + 1$$
.

Vérifier que l'équation $P_k(x) = 0$ admet, quelque soit le réel k, quatre racines réelles distinctes.

Soit la fonction $f: x \mapsto \frac{3x^2 - x - 2}{x^2 - x - 2}$ et C la

courbe de f dans un repère orthonormé (O, i, j).

- 1. Préciser l'ensemble de définition de f.
- 2. Dresser le tableau de variation de f.
- 3. Déterminer les asymptotes à la courbe C et tracer C.
- 4. Discuter graphiquement, suivant les valeurs du réel m, le nombre et le signe des solutions de l'équation $(3-m)x^2 + (m-1)x + 2(m-1) = 0$.
- 5. Soit g la restriction de f à l'intervalle $[2, +\infty]$.
- a. Montrer que la fonction g admet une fonction réciproque g⁻¹ dont on précisera l'ensemble de définition.
- b. Tracer la courbe de g^{-1} dans le repère $(0, \vec{i}, \vec{j})$.

Soit la fonction $f: x \mapsto \frac{(x+1)^3}{(x-1)^2}, x \neq 1$.

- 1. Vérifier que $f(x) = x + 5 + \frac{12}{x-1} + \frac{8}{(x-1)^2}, x \ne 1$.
- 2. Dresser le tableau de variation de f.
- 3. Soit & la courbe de f dans un repère orthonormé (0,i,j).
- a. Montrer que & admet une asymptote oblique D que l'on déterminera.
- b. Déterminer les coordonnées des points d'intersection A et B de la courbe & avec les droites d'équations x = 0 et y = x + 5.
- c. Donner les équations des tangentes en A et en B à C.
- d. Tracer ces tangentes et la courbe \mathscr{C} .

Soit la fonction $f: x \mapsto \sqrt{x^2 - x + 1}$

On désigne par C_f la courbe représentative de f dans un repère orthogonal du plan.

- 1. a. Déterminer l'ensemble D de définition de la fonction f.
- b. Montrer que pour tout réel de D,

$$f(x) = \sqrt{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}}$$
.

- 2. a. Montrer que la droite Δ d'équation
- $y = x \frac{1}{2}$ est une asymptote à la courbe de f en $+\infty$.
- b. Etudier la position de la courbe de f par rapport à la droite Δ .
- 3. Etudier la nature de la branche infinie de C_f en $-\infty$.
- 4. Tracer C_f et Δ .

Soit la fonction $f: x \mapsto \sqrt{x^2 + 3x - 4}$ et C la

courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Préciser l'ensemble de définition de f.
- 2. Etudier la dérivabilité de f à gauche en -4 et à

Interpréter graphiquement les résultats obtenus.

- 3. Etudier la dérivabilité de f sur chacun des intervalles $]-\infty,-4[$ et $]1,+\infty[$ et déterminer f'.
- 4. Dresser le tableau de variation de f.
- 5. Etudier les branches infinies.
- 6. a. Tracer C.
- b. En déduire la représentation de la courbe d'équation $x^2 - y^2 + 3x - 4 = 0$.

Soit la fonction $f: x \mapsto x^2 - 32\sqrt{x} + 31$ et C

la courbe de f dans un repère orthogonal (O, \vec{i}, \vec{j}) . (On prendra 1cm comme unité sur l'axe des abscisses et 2mm sur l'axe des ordonnées).

- 1. Etudier la dérivabilité de f à droite en 0.
- Dresser le tableau de variation de f.
- 3. Tracer C.
- 4. En déduire la courbe représentative de la fonction $g: x \mapsto x^2 - 32\sqrt{|x|} + 31$.

18 Soit g la fonction définie sur R₊ par

$$g(x) = x\sqrt{x} + 10.$$

- 1. Montrer que g est dérivable à droite en 0.
- 2. Calculer g'(x), x > 0.
- 3. Dresser le tableau de variation de g.
- 4. Calculer $\lim_{x \to +\infty} \frac{g(x)}{x}$.
- 5. Représenter g dans un repère orthogonal (O, \vec{i}, \vec{j}) .

Exercices et problèmes

Soit la fonction
$$f: x \mapsto \frac{2+\sqrt{4-x^2}}{x}$$
 et C la

courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. Préciser l'ensemble de définition de f.
- 2. Etudier la dérivabilité de f en 2 à gauche et interpréter graphiquement le résultat.
- 3. Etudier la dérivabilité de f sur [0,2] et déterminer f'
- 4. Dresser le tableau de variation de f.
- 5. a. Déterminer les points d'intersection de C et de la droite D d'équation y = x.
- b. Tracer C.
- 6. Soit g la restriction de f à [0,2].
- a. Montrer que g réalise une bijection de [0,2] sur un intervalle I que l'on précisera.
- b. Expliciter $g^{-1}(x)$, $x \in I$.
- c. Tracer la courbe C' de g^{-1} dans $(0, \vec{i}, \vec{j})$.

Soit la fonction
$$f: x \mapsto \frac{2x+1}{\sqrt{x^2+x+1}}$$
 et C la

courbe de f dans un repère orthonormé (O, i, j).

- 1. Dresser le tableau de variation de f.
- 2. Montrer que le point d'intersection I de C avec l'axe des abscisses est un centre de symétrie de C.
- 3. Existe-t-il des points de C où la tangente est parallèle à la droite d'équation y = 1.5x

Si oui, donner les équations de ces tangentes.

- 4. Tracer C.
- 5. a. Montrer que la fonction f admet une fonction réciproque f^{-1} .
- b. Tracer la courbe de f^{-1} dans (O, \vec{i}, \vec{j}) .
- c. Calculer $(f^{-1})'(1)$.

I. Soit la fonction
$$f: x \mapsto -\frac{1}{2} + \frac{x}{2\sqrt{x^2 + 1}}$$
 et C

la courbe de f dans un repère orthonormé (O, i, j).

- 1. Dresser le tableau de variation de f.
- 2. Montrer que la fonction f réalise une bijection de R sur un intervalle que l'on précisera.

II. Soit g la fonction définie sur R par

$$g(x) = -\frac{1}{2}x + 1 + \frac{1}{2}\sqrt{x^2 + 1}$$
.

- 1. Dresser le tableau de variation de g.
- 2. Déterminer les asymptotes à la courbe C' de g et étudier la position de C' par rapport à ses asymptotes.
- a. Tracer C'.
- b. Montrer que g réalise une bijection de R sur un intervalle I que l'on précisera.
- c. Vérifier que $g^{-1}(x) = \frac{1}{4x-4} + 1 x$, $x \in I$.
- d. Tracer la courbe de g^{-1} dans (O, \vec{i}, \vec{j}) .

Soit la fonction
$$f: x \mapsto 1 + \frac{x}{\sqrt{x^2 + 1}}$$
 et C la

courbe de f dans un repère orthonormé $(O, \overline{i}, \overline{j})$.

- 1. Dresser le tableau de variation de f.
- 2. a. Montrer que C admet un point d'inflexion A dont on déterminera les coordonnées.
- b. Ecrire une équation de la tangente T à C au point A.
- c. Montrer que A est un centre de symétrie pour C.
- d. Construire C.
- 3. a. Montrer que la fonction f réalise une bijection de R sur un intervalle I que l'on précisera.
- b. Expliciter $f^{-1}(x)$ pour tout x de I.
- c. Tracer la courbe de f^{-1} dans (O, \vec{i}, \vec{j}) .
- d. Montrer que f^{-1} est dérivable et calculer $(f^{-1})'(x)$.
- 4. Montrer que l'équation f(x) = x admet une unique solution dans $\lceil \sqrt{3}, 2 \rceil$.
- 5. On définit la suite réelle (u_n) par $\begin{cases} u_0 = 2, \\ u_{n+1} = f(u_n). \end{cases}$
- a. Montrer que la suite (u_n) est décroissante.
- b. Montrer que $\sqrt{3} \le u_n \le 2$, pour tout entier n.
- c. En déduire que (u_n) est convergente et déterminer sa limite.

Etudier et représenter graphiquement la

function $f: x \mapsto \sin x + \frac{1}{2}\sin 2x$.

24 Etudier et représenter graphiquement la

fonction $f: x \mapsto \frac{\cos x}{2\cos x - 1}$.

25 Soit f la fonction définie sur R par

$$f(x) = \sin^2 x + \cos x.$$

On désigne par Cf sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1. a. Montrer que 2π est une période de f.
- b. Montrer que la droite des ordonnées est un axe de symétrie de C_f.
- 2. a. Etudier les variations de f.
- b. Montrer que l'équation f(x) = 0 admet une solution unique α dans $[0,\pi]$.

Donner un encadrement de α d'amplitude 10^{-1} . c. Tracer la représentation graphique de la restriction de f à l'intervalle $[-\pi, 2\pi]$.

I. Etudier et représenter graphiquement la

function $f: x \mapsto \frac{x^3}{(x-1)^2}$.

II. Soit la fonction $h: x \mapsto \frac{\sin^3 x}{(\sin x - 1)^2}$ et C_h sa

courbe dans un repère orthonormé.

- 1. a. Déterminer l'ensemble de définition de h.
- b. Vérifier que 2π est une période de h.
- c. Montrer que la droite d'équation $x = \frac{\pi}{2}$ est un axe de symétrie pour C_h.
- 2. a. Déterminer $\lim_{x \to a} h(x)$.

- b. En écrivant $h = f \circ \sin$, déduire le sens de variation de h sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- c. Résoudre l'équation h'(x) = 0.
- d. Montrer que l'origine du repère est un point d'inflexion de Ch.
- 3. Tracer Ch .

1. Etudier et représenter graphiquement la

function
$$f: x \mapsto \frac{x(x+1)}{x-2}$$
.

2. Déterminer graphiquement, suivant les valeur de m, le nombre de solutions de l'équation

$$x^2 + (1-m)x + 2m = 0$$
.

3. Déterminer graphiquement, suivant les valeur de m, le nombre de solutions de l'équation

$$\cos^2 x + (1-m)\cos x + 2m = 0$$
 dans $[0, 2\pi]$.